Show simple item record

dc.contributor.authorBin Zhang
dc.contributor.authorJian-Feng Li
dc.contributor.authorQi-Ling Zhong
dc.contributor.authorBin Ren
dc.contributor.author任斌
dc.contributor.authorZhong-Qun Tian
dc.contributor.author田中群
dc.contributor.authorShou-Zhong Zou
dc.date.accessioned2011-11-11T14:50:46Z
dc.date.available2011-11-11T14:50:46Z
dc.date.issued2005-06
dc.identifier.citationLangmuir, 2005, 21 (16): 7449–7455zh_CN
dc.identifier.issn0743-7463
dc.identifier.urihttp://dx.doi.org/doi:10.1021/la050004n
dc.identifier.urihttps://dspace.xmu.edu.cn/handle/2288/11165
dc.description.abstractCore-shell Au-Pt nanoparticles were synthesized by using a seed growth method and characterized by transmission electron microscopy, X-ray diffraction, and UV-vis spectroscopy. AU(core)-Pt-shell/GC electrodes were prepared by drop-coating the nanoparticles on clean glassy carbon (GC) surfaces, and their electrochemical behavior in 0.5 M H2SO4 revealed that coating of the Au core by the Pt shell is complete. The electrooxidation of carbon monoxide and methanol on the Au-core-Pt-shell/GC was also examined, and the results are similar to those obtained on a bulk Pt electrode. High quality surface-enhanced Raman scattering (SERS) spectra of both adsorbed CO and thiocyanate were observed on the AU(core)-Pt-shell/GC electrodes. The potential-dependent SERS features resemble those obtained on electrochemically roughened bulk Pt or Pt thin films deposited on roughened Au electrodes. For thiocyanate, the C-N stretching frequency increases with the applied potential, yielding two distinctly different d nu(CN)/dE. From -0.8 to -0.2 V, the d nu(CN)/dE is ca. 50 cm(-1)/V, whereas it is 90 cm(-1)/V above 0 V. The bandwidth along with the band intensity increases sharply above 0 V. At the low-frequency region, Pt-NCS stretching mode at 350 cm(-1) was observed at the potentials from -0.8 to 0 V, whereas the Pt-SCN mode at 280 cm(-1) was largely absent until around 0 V and became dominant at more positive potentials. These potential-dependent spectral transitions were attributed to the adsorption orientation switch from N-bound dominant at the negative potential region to S-bound at more positive potentials. The origin of the SERS activity of the particles is briefly discussed. The study demonstrates a new method of obtaining high quality SERS on Pt-group transition metals, with the possibility of tuning SERS activity by varying the core size and the shell thickness.zh_CN
dc.language.isoenzh_CN
dc.publisherAMER CHEMICAL SOCzh_CN
dc.titleElectrochemical and surfaced-enhanced Raman spectroscopic investigation of CO and SCN- adsorbed on Au-core-Pt-shell nanoparticles supported on GC electrodeszh_CN
dc.typeArticlezh_CN


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record