Show simple item record

dc.contributor.author李金
dc.contributor.author余德浩
dc.date.accessioned2016-05-17T03:04:27Z
dc.date.available2016-05-17T03:04:27Z
dc.date.issued2015-7-20
dc.identifier.citation中国科学:数学,2015,(7):30-45
dc.identifier.issn1674-7216
dc.identifier.otherJAXK201507004
dc.identifier.urihttps://dspace.xmu.edu.cn/handle/2288/108774
dc.description.abstract超奇异积分的近似计算是边界元方法,特别是自然边界元理论中必须面对的难题之一.经典的数值方法,如gAuSS求积公式和nEWTOn-COTES积分公式等数值方法,都不能直接用于超奇异积分的近似计算.本文将介绍超奇异积分基于不同定义的gAuSS积分公式、S型变换公式、nEWTOn-COTES积分公式和外推法近似计算超奇异积分的思路,重点阐述nEWTOn-COTES积分公式和基于有限部分积分定义的外推法近似计算超奇异积分的主要结论.
dc.description.abstractThe computation of hypersingular integral is one of the important subjects in boundary element methods especially in natural boundary element methods.Classical numerical methods such as Gauss methods,Newton-Cotes methods cannot be used to approximate the hypersingular integral directly.In this paper, we introduce the numerical methods such as Gauss methods, Newton-Cotes methods, S transformation methods and extrapolation methods which are based on different definitions; then we mainly present the results of Newton-Cotes methods and extrapolation methods which are used to compute the hypersingular integral.
dc.description.sponsorship国家自然科学基金(批准号:11471195;11101247;11201209和91330106); 中国博士后科学基金(批准号:2013M540541)资助项目
dc.language.isozh_CN
dc.subject自然边界元
dc.subject超奇异积分
dc.subject误差泛函
dc.subjectNewton-Cotes积分公式
dc.subjectnatural boundary element methods
dc.subjecthypersingular integral
dc.subjecterror functional
dc.subjectNewton-Cotes methods
dc.title边界元方法中超奇异积分的计算方法献给林群教授80华诞
dc.title.alternativeNumerical methods to compute hypersingular integral in boundary element methods
dc.typeArticle


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record