Now showing items 1624-1643 of 2622

    • y--2=x--3-27x-62上的整数点(英文) 

      祝辉林; 陈建华 (2009)
      使用代数数论和P-AdIC分析,我们我到了椭圆曲线y--2=X--3+27X-62上所有的整数点。我们给出了一个全虚四次域的子环上计算基本单位和二次代数数“不相关分解“的方法。
    • Z-TRANSFORMATION GRAPHS OF PERFECT MATCHINGS OF HEXAGONAL SYSTEMS 

      Zhang, F. J.; Guo, X. F.; Chen, R. S.; 郭晓峰 (1988)
      Let H be a hexagonal system. We define the Z-transformation graph Z(H) to be the graph where the vertices are the perfect matchings of H and where two perfect matchings are joined by an edge provided their symmetric ...
    • Z-transformation graphs of perfect matchings of plane bipartite graphs 

      Zhang, HP; Zhang, FJ; Yao, HY; 张福基 (2004-02-06)
      Let G be a plane bipartite graph with at least two perfect matchings. The Z-transformation graph, Z(F)(G), of G with respect to a specific set F of faces is defined as a graph on the perfect matchings of G such that two ...
    • Zero dissipation limit to a Riemann solution consisting of two shock waves for the 1D compressible isentropic Navier-Stokes equations 

      Zhang YingHui; Pan RongHua; Tan Zhong; 谭忠 (SCIENCE PRESS, 2013)
      We investigate the zero dissipation limit problem of the one dimensional compressible isentropic Navier-Stokes equations with Riemann initial data in the case of the composite wave of two shock waves. It is shown that the ...
    • Zero relaxation limit to centered rarefaction waves for Jin-Xin relaxation system 

      Zhang, Yinghui; Tan, Zhong; Sun, Ming-Bao; 谭忠 (NONLINEAR ANAL-THEOR, 2011-03-15)
      In this paper, we study the zero relaxation limit problem for the following Jin-Xin relaxation system {u(t) + v(x) = 0 v(t) + a(2)u(x) = 1/epsilon (f(u) - v) (E) with initial data (u, v)(x, 0) = (u(0)(x), v(0)(x)) -> (u ...
    • Zero Surface Tension Limit of Viscous Surface Waves 

      Tan, Zhong; Wang, Yanjin; 谭忠; 王焰金 (SPRINGER, 2014 JUN)
      We consider the free boundary problem for a layer of viscous, incompressible fluid in a uniform gravitational field, lying above a rigid bottom and below the atmosphere. For the "semi-small" initial data, we prove the zero ...
    • ZEROS OF BRAUER CHARACTERS 

      Wang Huiqun; Chen Xiaoyou; Zeng Jiwen (ELSEVIER SCIENCE INC, 2012-07)
      The authors obtain a sufficient condition to determine whether an element is a vanishing regular element of some Brauer character. More precisely, let G be a finite group and p be a fixed prime, and H = G'O-p' (G); if g ...
    • Zeros of the Jones polynomial are dense in the complex plane 

      Jin, XA; 金贤安; Zhang, FJ; 张福基; Dong, FM; Tay, EG (2010-07-10)
      In this paper, we present a formula for computing the Tutte polynomial of the signed graph formed from a labeled graph by edge replacements in terms of the chain polynomial of the labeled graph. Then we define a family of ...
    • Zeros of the Jones Polynomial for Multiple Crossing-Twisted Links 

      Jin, XA; Zhang, FJ; 金贤安 (2010-09)
      Let D be a general connected reduced alternating link diagram, C be the set of crossings of D and C' be the nonempty subset of C. In this paper we first define a multiple crossing-twisted link family {D(n)(C')|n = 1, 2, ...
    • Zeros of the Jones polynomials for families of pretzel links 

      Jin, XN; Zhang, FJ; 张福基 (2003-10-15)
      In this paper, a general method for computing the Tutte polynomial of the subdivision of a graph is explained. As an application to the subdivision of sheaf graph which consists of two vertices joined by some parallel ...
    • α-双对角占优与H矩阵的判定 

      汪祥; 卢琳璋 (2003-09-30)
      设A=(aij)∈Cn×n,若 α∈[0,1],使对 i≠j(i,j∈N)均有|aiiajj|≥(Λi,Λj)α(SiSj)1-α,则称A为α 双对角占优矩阵.本文利用矩阵回路给出了A为H阵的新的判定准则,即A=(aij)∈Cn×n,若对任意i∈N和v∈S(A)有:ΠΛi)α(ΠSi)1-α,α∈[0,1],则A为H阵,改进和推广了已有的结果.|aii|>(Πi∈νi∈νi∈ν
    • α-双对角占优矩阵 

      汪祥; 卢琳璋 (2003-07-30)
      Li Bishan和Tsatsomeros定义了双对角占优矩阵,并且给出了不可约双对角占优矩阵是奇异的及不是H-阵的充分必要条件。本文利用矩阵的有向图的方法研究了α-双对角占优矩阵的性质,并给出了A为奇异的及A不是H-阵的充分必要条件,推广了其主要结果。
    • γ-klee-图的Hamilton-连通性和着色(英文) 

      魏首柳; 王艳 (2013-06-15)
      一个r-klEE-图递归定义为一个r+1阶完全图或者通过用一个r阶完全图替换已知的r-klEE-图g′中的一个顶点所得到的图.本文主要研究了r-klEE-图的HAMIlTOn-连通性和着色问题.我们证明了:每一个r-klEE-图是HAMIlTOn-连通的和它的色数是r;如果r是奇数,则它的边色数是r;如果r是偶数,则它的边色数是r+1.
    • Δ--P集值函数空间的定义与性质 

      叶培新; 王坚勇 (1999)
      分析了取值于bAnACH空间子集的集值函数的拓扑结构,并在其上建立积分,ΔP度量概念,研究了与逼近问题相关的基本性质.最后给出一个逼近定理:在ΔP度量下取紧凸值的简单集值函数的全体稠密于lPA(Ω,X).
    • π-Hall子群的线性特征标的诱导 

      范娟娟; 杜妮 (2009)
      诱导特征标研究群g的特征标与它的子群的特征标之间的关系,其主要目的是利用g的子群已知的不可约特征标来获得g的一些不可约特征标,从而了解g的结构.MCkAy猜想断言:设g为任意有限群,P为任意素数,n为g的一个SylOWP-子群P在g中的正规化子,则g和n的P′-次不可约复特征标的个数恰好相等.显然n的每个P′-次不可约复特征标在P上的限制均为线性特征标.在研究g和n的P′-次不可约复特征标之间可能存在的典范对应时,nAVArrO于200 ...
    • τ-rigid对象和rigid对象 

      邱晓龙 (2016-01-28)
      对于一个cluster-倾斜三元组(D,T,A),讨论了A中的τ-rigid对象与D中的rigid对象之间的关系,并给出了A中的τ-rigid对象可提升到D中的rigid对象的充要条件.
    • 一个交通模型的行波解的渐近稳定性(英文) 

      张映辉; 谭忠 (2011)
      主要考虑下面的交通模型的行波解的渐近稳定性.其中初始值为V_T-u_X=0u_T+P(V)_X=1/ε(f(V))-u)+μu_(XX),(E)(V,u)(X,0)=(V_0(X),u_0(X))→(V_±,u_±),V_±>0,AS X→±∞(I)在允许流函数f不是凹函数以及初始值在无穷远处的极限不满足平衡方程的条件下,我们得到了稳定性定理.证明的方法主要是通过构造一对误差函数以及运用加权能量估计办法.
    • 一个基于格的环签名方案的改进 

      热娜·艾合买提; 张娟; 李伟; 曾吉文 (2018-03-28)
      针对Wang等提出的基于格中困难问题的环签名方案不满足不可伪造性的问题,提出了一种改进的环签名方案.该方案在随机谕言模型下满足全密钥暴露下的匿名性和内部攻击下的不可伪造性.而且使用一种强陷门生成算法,保证了新的签名方案简单、高效且容易实施.
    • 一个庞卡莱映射的逼近 

      贾鲁昆; 程金发; 温泳铭 (2017)
      在连接同宿轨的双曲不动点附近可以构造一个庞卡莱映射,但一般来说,该庞卡莱映射及其线性逼近在其整个定义域内无法做到一致逼近.通过一个例子说明Wig; gins; S证明中的一个错误,给出庞卡莱映射在整个定义域内能被逼近的一个充分条件,并证明在庞卡莱映射定义域的一个子集内,该映射与其线性化映射可以做到一致逼; 近.
    • 一个模拟趋化现象的广义双曲-抛物系统的光滑解的全局分析 

      张映辉; 谭忠; 赖柏顺; 孙明保 (2012)
      考虑一个模拟趋化现象的广义双曲-抛物系统的CAuCHy问题,当动能函数为非线性函数且初始值具有小的l--2能量但其H--2能量可能任意大时,得到了全局光滑解的存在性和渐近行为.这些结果推广了以前的关于动能函数为线性函数或初始值具有小的H--2能量情形下的相关结果,首次获得了关于全局光滑大解方面的结果.这些结果的证明基于构造一个新的非负凸熵和做精细的能量估计.