• 中文
    • English
  • English 
    • 中文
    • English
  • Login
View Item 
  •   DSpace Home
  • 化学化工学院
  • 化学化工-已发表论文
  • View Item
  •   DSpace Home
  • 化学化工学院
  • 化学化工-已发表论文
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Ferromagnetic bonding: High spin copper clusters (Cu-n+1(n); n) 2-14) devoid of electron pairs but possessing strong bonding

Thumbnail
Full Text
Ferromagnetic bonding High spin copper clusters (Cu-n+1(n); n) 2-14) devoid of electron pairs but possessing strong bonding.htm (392bytes)
Date
2006-04
Author
de Visser, Sam P.
Kumar, Devesh
Danovich, Mark
Nevo, Nir
Danovich, David
Sharma, Pankaz K.
Wu, Wei
吴炜
Shaik, Sason
Collections
  • 化学化工-已发表论文 [14469]
Show full item record
Abstract
Density functional theoretic studies are performed for the high-spin copper clusters Cu-n+1(n) (n = 2 - 14), which are devoid of electron pairs shared between atoms, hence no-pair clusters (J. Phys. Chem. 1988, 92, 1352; Isr. J. Chem. 1993, 33, 455; J. Am. Chem. Soc. 1999, 121, 3165). Despite the lack of electron pairing, it is found that the bond dissociation energy per atom (BDE/n) is significant and converges (to within 1 kcal mol(-1)), around a cluster size Cu-11(10), to a value of BDE/n = 19 kcal mol(-1). This is a very large bonding energy, much larger than has previously been obtained for no-pair clusters of lithium, BDE/n = 12 kcal mol(-1), or sodium clusters, BDE/n = 3 kcal mol(-1). This bonding, so-called ferromagnetic bonding (FM-bonding) is analyzed using a valence bond (VB) model (J. Phys. Chem. A 2002, 106, 4961; Phys. Chem. Chem. Phys. 2003, 5, 158). As such, FM-bonding in no-pair clusters is described as an ionic fluctuation, of the triplet pair, that spreads over all the close neighbors of a given atom in the clusters. Thus, if we refer to each triplet pair and its ionic fluctuations as a local FM-bond, we can regard the electronic structure of a given M-n+1(n) cluster as a resonance hybrid of all the local FM-bonds between close neighbors. The model shows how a weak interaction in the diatomic triplet molecule can become a remarkably strong binding force that binds together mono-valent atoms without even a single electron pair. This is achieved because the growing number of VB structures exerts a cumulative effect of stabilization that is maximized when the cluster has a compact structure with an optimal coordination number for the atoms.
Citation
J. Phys. Chem. A, 2006, 110 (27):8510–8518
URI
http://dx.doi.org/doi:10.1021/jp055125a
https://dspace.xmu.edu.cn/handle/2288/10360

copyright © 2002-2016  Duraspace  Theme by @mire  厦门大学图书馆  
About | Policies
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

copyright © 2002-2016  Duraspace  Theme by @mire  厦门大学图书馆  
About | Policies