学校编码: 10384

学号: 20520101151586

分类号_____ 密级____ UDC

唇の大学

硕士学位论文

金/银改性负载型铜基催化剂制备和对草酸酯/乙酰丙酸选择性加氢反应性能的研究

Preparation and Performance of Gold/Silver-Modulated
Supported Copper Catalysts for Selective Hydrogenation of
Dimethyl Oxalate and Levulinic Acid

黄 莹

指导教师姓名: 袁友珠 教 授

专业名称:物理化学

论文提交日期: 2013年 5 月

论文答辩时间: 2013 年 6 月

学位授予日期: 2013 年 月

答辩多	委员会	主席:	
评	阅	人:	

Preparation and Performance of Gold/Silver-Modulated Supported Copper Catalysts for Selective Hydrogenation of Dimethyl Oxalate and Levulinic Acid

Ying Huang

Supervisor: Prof. Youzhu Yuan

State Key Laboratory of Physical Chemistry of Solid Surfaces
and National Engineering Laboratory for Green Chemical
Production of Alcohols-Ethers-Esters
College of Chemistry and Chemical Engineering

Xiamen University

June, 2013

厦门大学学位论文原创性声明

本人呈交的学位论文是本人在导师指导下,独立完成的研究成果。 本人在论文写作中参考其他个人或集体已经发表的研究成果,均在文中以适当方式明确标明,并符合法律规范和《厦门大学研究生学术活动规范(试行)》。

另外,该学位论文为()课题(组) 的研究成果,获得()课题(组) 经费或实验室的资助,在()实验室完成。(请在以上括号内填写课题或课题组负责人或实验室名称,未有此项声明内容的,可以不作特别声明。)

声明人(签名):

年 月 日

厦门大学学位论文著作权使用声明

本人同意厦门大学根据《中华人民共和国学位条例暂行实施办法》等规定保留和使用此学位论文,并向主管部门或其指定机构送交学位论文(包括纸质版和电子版),允许学位论文进入厦门大学图书馆及其数据库被查阅、借阅。本人同意厦门大学将学位论文加入全国博士、硕士学位论文共建单位数据库进行检索,将学位论文的标题和摘要汇编出版,采用影印、缩印或者其它方式合理复制学位论文。

本学位论文属于:

- ()1.经厦门大学保密委员会审查核定的保密学位论文,
- 于 年 月 日解密,解密后适用上述授权。
- () 2.不保密,适用上述授权。

(请在以上相应括号内打"√"或填上相应内容。保密学位论文应 是已经厦门大学保密委员会审定过的学位论文,未经厦门大学保密委 员会审定的学位论文均为公开学位论文。此声明栏不填写的,默认为 公开学位论文,均适用上述授权。)

声明人(签名):

年 月 日

目录

摘	要	•••••••••••••••••••••••••••••••••••••••	I
Ab	stract	•••••••••••••••••••••••••••••••••••••••	III
			XX
第-	一章:	绪论	1
	1.1 草	草酸二甲酯加氢制乙二醇反应	1
	1.1.1	1 草酸二甲酯加氢制乙二醇的研究背景	1
	1.1.2		
	1.1.3	3 酯加氢铜基催化剂的研究进展	12
	1.1.4	4 Cu 基催化剂研究存在的问题和争议	16
	1.2 Z	乙酰丙酸加氢制 γ-戊内酯反应 ····································	19
	1.2.1	1 乙酰丙酸加氢制 γ-戊内酯的研究背景	19
	1.2.2	2 乙酰丙酸加氢制 γ-戊内酯的研究现状	25
	1.3 II	B 族铜基双金属催化剂的研究概况	28
	1.3.1	1 Cu-Au 催化剂	28
	1.3.2	2 Cu-Ag 催化剂	29
	1.4 本	本论文的思路和目的 	30
	1.5 论	仑文的组成 ·······	32
	参考文	と献	33
V,			
第:	二章	实验部分	45
	2.1 原	原料与试剂 ····································	45
	2.2 催	崔化剂的表征 ····································	46
	2.2.1	1 XRD	46
	2.2.2	2 低温 N₂物理吸附	47
	2.2.3	3 ICP-OES	48

2.2.4	TEM	·····48
2.2.5	XPS 和 XAES ······	48
2.2.6	H ₂ -TPR ·····	49
2.2.7	N ₂ O 化学吸附-H ₂ 脉冲还原	49
2.2.8	UV-Vis DRS ·····	50
2.2.9	EXAFS	50
2.3 催化	化剂性能评价	······51
参考文献	武	52
第三章 (u-Ag 双金属催化剂上草酸二甲酯加氢反应的研究 ··	53
3.1 引	i	53
3.2 反	立原理	54
3.3 实	应原理 ····································	54
3.3.1	IE I 6/14 H 4 I H	54
3.3.2	催化剂性能评价	55
	产物分析及计算	
3.4 结!	果与讨论	57
3.4.1	Cu-Ag 双金属催化剂的草酸二甲酯加氢性能	57
3.4.2	催化剂的表征及构效关联	62
3.4.3	Cu-Ag 双金属催化剂的结构与性能关联	83
3.5 本	章小结	·····84
参考文献	₹	·····86
第四章(C	u-Au 双金属催化剂上乙酰丙酸加氢反应的研究 ·····	·····89
4.1 引	i ····································	89
4.2 反	立原理	90
4.3 实	俭部分 ······	91
4.3.1	催化剂的制备	91
4.3.2	催化剂性能评价	94

	4.3	3.3	产物分析及计算95
	4.4	结身	具与讨论96
	4.4	l .1	Cu-Au 双金属催化剂的气相乙酰丙酸加氢性能96
	4.4	1.2	催化剂的表征及构效关联104
	4.5	本章	章小结 ·······111
	参考	文南	t113
第三	五章	全	文总结116
	5.1	Cu-	Ag 双金属催化剂 DMO 加氢反应的研究116
	5.2	Cu-	Au 双金属催化剂上 LA 加氢反应的研究117
			-17.7
硕:	士期间	ョ发	表论文目录118
致			120

Contents

Abstract in	n Chinese ······I
Abstract in	n English ······III
	///
Chapter 1	General introduction ······1
1.1 Hy	drogenation of dimethyl oxalate to ethylene glycol1
1.1.1	Background of dimethyl oxalate to ethylene glycol ······1
1.1.2	Research status of catalysts for dimethyl oxalate hydrogenation9
1.1.3	Research status of Cu based catalysts for esters hydrogenation12
1.1.4	Controversy in the research of Cu based catalysts16
1.2 Hy	drogenation of levulinic acid to γ -valerolactone19
1.2.1	Background of levulinic acid hydrogenation19
1.2.2	Research status of levulinic acid hydrogenation25
1.3 Re	search status of CuM bimetallic catalysts in IB group28
1.3.1	Cu-Au bimetallic catalysts28
1.3.2	Cu-Ag bimetallic catalysts29
1.4 Ob	jectives of the thesis30
1.5 Ou	tline of the thesis32
Referen	ces33
Chapter 2	Experimental45
2.1 Ma	aterial and Reagents45
2.2 Ch	naraterizations of catalysts46
2.2.1	Powder X-Ray Diffraction (XRD)46
2.2.2	Low temperature N ₂ physical adsorption47
2.2.3	Inductively Coupled Plasma Optical Emission Spectrometer (ICP-OES)
	48

2.2.4	Transmission Electron Microscopy (TEM)48
2.2.5	X-Ray Photoelectron Spectroscopy (XPS) and Auger Electron
	Spectronscopy (XAES)48
2.2.6	H ₂ -Temperature Programmed Reduction (H ₂ -TPR)49
2.2.7	N ₂ O Chemisorption-H ₂ Pulse Reduction49
2.2.8	Ultraviolet Visible Diffuse Reflection Spectroscopy (UV-Vis DRS) ··50
2.2.9	Extended X-Ray Adsorption Fine Structure Spectrum (EXAFS)50
2.3 Eva	aluation of catalytic properties51
	ces52
Chapter 3	Cu-Ag bimetallic catalysts for dimethyl oxalate
- -	
	enation53
	roduction53
	action mechanism54
3.3 Ex	perimental ······54
3.3.1	Preparation of catalysts54
3.3.2	Evaluation of catalytic properties55
3.3.3	Analysis and calculation of products56
3.4 Res	sults and discussions57
3.4.1	Catalytic performance of Cu-Ag bimetallic catalysts for dimethyl
	oxalate hydrogenation57
3.4.2	Characterizations and structure-activity relationships62
3.4.3	Relationships between the structure of Cu-Ag catalysts and the
	catalytic performance83
3.5 Co	nclusions84
Referen	ces86

Chapter 4 Cu-Au bimetallic catalysts for levulinic acid

hydrogenation89
4.1 Introduction89
4.2 Reaction mechanism90
4.3 Experimental91
4.3.1 Preparation of catalysts91
4.3.2 Evaluation of catalytic properties94
4.3.3 Analysis and calculation of products95
4.4 Results and discussions96
4.4.1 Catalytic performance of Cu-Au bimetallic catalysts for levulinic acid
hydrogenation96
4.4.2 Charaterizations and structure-activity relationships104
4.5 Conclusions111
References
Chapter 5 General conclusions116
5.1 Research of Cu-Ag catalysts for dimethyl oxalate hydrogenation •••••116
5.2 Research of Cu-Au catalysts for levulinic acid hydrogenation117
List of Publication ······118
Acknowledgement120

摘要

本论文以草酸二甲酯(DMO)气相加氢制乙二醇(EG)和乙酰丙酸(LA)气相加氢制 γ -戊内酯(GVL)作为目标反应,采用 Ag 或 Au 对 Cu 基催化剂进行改性,开发了 Cu-Ag/SiO₂和 Cu-Au/SBA-15 两种双金属催化剂,分别考察了它们在 DMO 气相加氢和 LA 气相加氢反应中的催化活性。通过对催化剂的结构进行较为系统的表征并与其催化活性进行关联,取得了以下主要研究成果:

采用尿素助溶胶凝胶法,制备了一系列 Ag 促进的 Cu-Ag/SiO₂ 双金属催化剂,考察其 DMO 加氢的催化性能,并与催化剂结构相关联。结果表明,少量 Ag 的引入可使 Cu 基催化剂 DMO 加氢制 EG 的转化率以及稳定性得到有效提高。在 T = 463 K,P(H₂) = 3.0 MPa,H₂/DMO (molar ratio) = 80,WLHSV_{DMO} = 1.05 h⁻¹ 的反应条件下,组成优化的 Cu₁-Ag_{0.05}/SiO₂ 催化剂的 EG 收率是单金属 Cu/SiO₂ 催化剂的 2.2 倍;在优化条件下连续反应 150 h 后,Cu₁-Ag_{0.05}/SiO₂ 催化剂的 DMO 转化率在 99%左右,EG 选择性在 97%以上。利用 XRD、N₂O 化学吸附-H₂ 脉冲还原、H₂-TPR、UV-Vis DRS、TEM、XPS 和 EXAFS 等手段研究催化剂的结构,表征结果显示,适量 Ag 的引入可以在一定程度上提高 Cu 基催化剂中 Cu 纳米粒子的分散,调变催化剂表面 Cu⁺和 Cu⁰ 的比例。此外,Cu-Ag 双金属催化剂中,Ag 物种除了与 Cu 形成合金外,还有部分 Ag 物种以纳米团簇的形式存在,它们与 Cu 纳米粒子之间的相互作用可能有利于维持 Cu⁺和 Cu⁰之间合适的比例分布以及阻止 Cu 纳米粒子的聚集,从而使 Cu-Ag 双金属催化剂获得优异的催化活性和稳定性。

采用两步吸附-NaBH₄还原法,在 Cu 基催化剂中引入少量 Au 不仅可以显著提高气相 LA 加氢反应活性,还可以有效改善其催化稳定性。组成最优的 Cu₁-Au_{0.1}/SBA-15 催化剂在 T=473 K, $P(H_2)=0.6$ MPa, H_2 /LA (molar ratio) = 80,WLHSV_{LA} = 4.8 h⁻¹ 的反应条件下可获得 98.3%的 LA 转化率和 98.1%的 GVL 选择性。在优化的反应条件下,Cu₁-Au_{0.1}/SBA-15 催化剂经过 45 h 的连续反应,LA 的转化率为 99%左右,GVL 的选择性仍维持在 90%以上,而单金属 Cu/SBA-15 催化剂在反应 10 h 后开始明显失活。结合 XRD 和 TEM 表征结果,推测 Cu-Au 双金属催化剂的优异催化性能与表面形成 Cu-Au 合金有关,这种合金的形成有

利于提高 LA 加氢性能,并减缓纳米粒子在反应过程中的聚集速度。

关键词:铜;银;金;双金属催化剂;草酸二甲酯;乙酰丙酸;催化加氢;合金

Degree papers are in the "Xiamen University Electronic Theses and Dissertations Database". Full texts are available in the following ways:

- 1. If your library is a CALIS member libraries, please log on http://etd.calis.edu.cn/ and submit requests online, or consult the interlibrary loan department in your library.
- 2. For users of non-CALIS member libraries, please mail to etd@xmu.edu.cn for delivery details.